详情介绍
原装IFM分体式流量传感器
原装IFM分体式流量传感器光敏IFM传感器
光敏IFM传感器是zui常见的IFM传感器之一,它的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线IFM传感器、紫外线IFM传感器、光纤式光电IFM传感器、色彩IFM传感器、CCD和CMOS图像IFM传感器等。它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。光IFM传感器不只局限于对光的探测,它还可以作为探测元件组成其他IFM传感器,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。光IFM传感器是目前产量zui多、应用zui广的IFM传感器之一,它在自动控制和非电量电测技术引中占有非常重要的地位。zui简单的光敏IFM传感器是光敏电阻,当光子冲击接合处就会产生电流。
湿度IFM传感器资讯
高分子电容式湿度IFM传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度IFM传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为78.36,在T=20℃时为79.63。有机物ε与温度的关系因材料而异,且不*遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为3.0一3.8。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均胀系数可达到的量级。例如硝酸纤维素的平均胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度IFM传感器的温度系数并非常数,而是个变量。所以通常IFM传感器生产厂家能在-10-60摄氏度范围内是IFM传感器线性化减小温度对湿敏元件的影响。 比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极。湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏IFM传感器是近年来大力发展的一种新型IFM传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏IFM传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度IFM传感器应当zui适用于湿度控制领域,其代表产品氯化锂湿度IFM传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏IFM传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点